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ABSTRACT 

We review some work on the application of GMRES to the solution of the discrete ordinates transport 
equation in one-dimension. We note that GMRES can be applied directly to the angular flux vector, or 
it can be applied to only a vector of flux moments as needed to compute the scattering operator of the 
transport equation. In the former case we illustrate both the delights and defects of ILU 
right-preconditioners for problems with anisotropic scatter and for problems with upscatter. When 
working with flux moments we note that GMRES can be used as an accelerator for any existing 
transport code whose solver is based on a stationary fixed-point iteration, including transport sweeps 
and DSA transport sweeps. We also provide some numerical illustrations of this idea. We finally show 
how space can be traded for speed by taking multiple transport sweeps per GMRES iteration. 
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1. INTRODUCTION 

The neutral particle transport equation, in either discrete or continuous form, can be written abstractly as 

T$ = C M $  + S .  (1) 

Here T represents the streaming and particle interaction processes, T$ = S? . v$+ E,$. The operator M 
computes some number of spherical-harmonic moments of the flux $ as needed for the order of scattering 
being modeled by the inscatter operator C, which could include up- and down-scatter in energy. The 
system is driven by an external source S and by some incoming flux boundary condition specified on a 
non-reentrant surface surrounding the region of interest. For the case of isotropic scattering we would have 
M $  = J4.rr $ dS?, which is just the scalar flux, but the restriction to isotropic scattering thereby suggested is 
not necessary for the developments that follow, and the operator M could in fact compute several higher 
moments. In general, the Greek letter phi will represent all of the flux moments necessary for a given 
computation, 
C and M could represent some set of consistent numerical approximations. But none of these details is 
crucial to the discussions that follow. 

= M$. Further, since we are ultimately talking about numerical methods, the operators T ,  
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Traditional approaches to the iterative solution of Eq. 1 are often in the form of a fixed-point iteration on 
the flux moments 

+(i) = L&-l) + +o .  (2) 

In standard transport sweeps we have L = MT-'C and #O = MT-lS is the uncollided flux, 
DSA accelerated sweeps we have #O = [I + MD-1C]q5, and L = M [ T P 1  + D-I(CA4T-l - I ) ]C,  
where D represents a diffusion (or more generally a P,) correction that is applied after each sweep [ I ] .  

while in 

GMRES [2] (Generalized Minimal RESidual) is an algorithm for the solution of general linear systems 
Ax = b. The method begins with a guess do), from which the initial residual r = b - Ax(o) is constructed; 
the method then approximately solves the problem for the correction Az = r, so that z = z(O) + z. This is 
done by minimizing the residual Ilr - Azll over the Krylov subspace 

&(A, r )  = span{r, Ar, A'r,. . . , An- l r } .  (3) 

The approximate solution is thus sought in the affine space x(O) + &(A, r ) ,  which is iteratively allowed to 
grow as needed. Practical accomplishment of the residual minimization is greatly simplified by the 
properties of the Krylov subspace; these important details will not be reviewed here, but can be found in 
Saad and Schultz.[2] 

It should be noted that GMRES requires the storage of n vectors, each the size of the solution vector 2, to 
hold a basis for K,(A,  r ) .  Pure GMRES proceeds, iteratively increasing the dimension of the Krylov 
subspace at each step, until Ilr - Azll is smaller than some specified tolerance. In contrast, the algorithm 
called GMRES(n) limits the size of the Krylov subspace used to n dimensions and restarts the whole 
algorithm if this limit is reached. In practical problems GMRES(n) has a very important advantage over 
GMRES because it has a fixed and known storage requirement, but it can converge more slowly than pure 
GMRES. In either case, note that the algorithm is a non-stationary iteration, and cannot be written in the 
form of Eq. 2 with fixed operator L. 

Recently there has been growing interest in applying this method to the transport equation (see, for 
example, [3-9, 1 1,121.) One approach is to apply GMRES to a discretized version of the 
right-preconditioned integro-differential transport equation (T - CM)P-l P$ = S,  with preconditioner 
P. The initial residual 6s = S - (T - CM)$(') used by GMRES is then the particle source that would 
determine the correction between the initial guess 
Krylov subspace over which the residual is minimized would be K, (T - C M ,  SS), built from powers of 
the transport operator applied to this particle source. While perhaps algebraically acceptable, physically we 
would not expect that K,, for small n, could accurately represent the flux. But if a preconditioner P 
represents an approximate transport process then the subspace K, ((7' - CM)P-l,  SS) involves applying 
the transport operator to a flux, P-lSS, and the angular flux qh will then be found by minimizing the 
residual 1 1  (T - CM)+ - SI1 over the affine space of angular fluxes qho + P-lKr, ( (T  - CM)P-' ,  6s). 
So GMRES applied directly to the transport equation without a preconditioner looks physically suspect, 
but with a good preconditioner it might attack otherwise quite difficult problems. We will illustrate the use 
of GMRES with ILU preconditioners to solve directly for the angular flux in Section 2. 

and the true flux. Without a preconditioner the 

Another approach to using GMRES for transport problems is to use it within a standard fixed point 
iteration, such as transport or DSA sweeps. GMRES can be applied to the fixed-point problem 
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whose solution is sought by the iteration of Eq. 2. This idea seems to originate with Faber & Manteuffel’s 
[IO] application of the conjugate gradient method to the problem, followed by the application of GMRES 
by Ashby, et al. [3], and later by Kelley and Xue [4]. However, it’s interesting interpretation as an 
accelerator for the fixed point iteration first appears in reference [l 11, where we show that applying 
GMRES(n) to (I - L)4  = 40 is equivalent to finding a linear combination of the iterates 4(i), 
i = 0,1, .  . . n - 1, from Eq. 2 that minimizes the residual ll(L - I ) 4  + 4011. It is easy to show that if the 
fixed-point iteration converges (IlLll < 1) 

so we see that GMRES(n), by minimizing the residual, is in a sense finding the best next iterate for the flux 
moments by using the information available in all of the iterates i = 0,1, .  . . n - 1. This is in contrast to 
the iterate L4(n-1) used by the standard iteration, which uses information only from the last iterate and 
which is not designed to minimize a residual. Since usually the fixed point iteration is run to an iterate n 
where I14(n) - = ll(L - I)c$(~-’) + 4011 is small, we can always do better by applying GMRES(n) 
instead, because GMRES(n) will actually minimize the quantity that we are trying to make small. This can 
be contrasted with the common game of acceleration schemes, which is to find a way to make IlLll as small 
as possible; GMRES gives us another approach based on minimizing ll(L - I)q5 - $011 over a space of 
previous iterates. 

GMRES can therefore be expected to decrease the number of iterations required for any fixed point 
iteration for the flux moments. GMRES might even be able to accelerate DSA. GMRES thus has the 
potential to provide an accelerator for any existing transport solver. This capability can be retrofitted 
relatively easily into an existing code, because GMRES requires only a means to evaluate the operator 
(I - L )  on a vector, and this capability is trivially provided by a code that already evaluates the action of L 
on any iterate. In Section 3 we will provide some illustrations of this approach. 

2. ILU PRECONDITIONED GMRES APPLIED TO THE ANGULAR FLUX 

The most direct application of GMRES to the transport equation comes from writing the discretized 
equation as (T - CM)+ = S. After storing (T - CM) as a sparse matrix, we proceed to apply 
preconditioned GMRES to solve directly for the angular flux. In this section we report on some 
experiences with this approach using the “off-the-shelf’ SPARSKIT package [ 131 to provide the 
preconditioners and the GMRES solver. We use the ILU(7) algorithm for preconditioning, with dropping 
parameter T = 
element of the LU factorization is generated it is set to zero if it is smaller than 7 times the norm of the row 
from which it came in (T - CM). This keeps the factorization incomplete and sparse. 

This algorithm performs an LU factorization of the system matrix, except as each 

The first set of problems solved considers a 5 mfp thick slab with an isotropic incoming flux applied at both 
boundaries; the discretization is diamond difference discrete ordinates. The transport sweeps were 
converged to a relative error of 
GMRES residual was converged to in the 12 norm. 

on the scalar flux and the net current, unless otherwise noted, and the 

We have studied the speed of ILU preconditioned GMRES,as a function of spatial mesh size, number of 
discrete ordinates, and scattering ratio [12]. The CPU time required to achieve a given convergence 
criterion increases roughly linearly with the number of mesh points. This is a direct consequence of the 
need to perform matrix-vector multiplies in the GMRES algorithm, and provides the same scaling as seen 
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Figure 1. Increase in CPU time with the number of discrete ordinates, with the ILU preconditioner and 
the GMRES solve separated, compared to standard sweeps. Note the rapid growth of the work required to 
construct the preconditioner. 

in standard transport sweeps. But, as shown in Fig. 1 ,  the CPU time increases nonlinearly in the number of 
discrete ordinates, and this growth in CPU time is dominated by the preconditioner construction; this 
growth is not surprizing since the bandwidth of the system matrix is proportional to the number of discrete 
ordinates, M, so a matrix-vector multiply scales with M 2 ,  and the ILU construction time will increase even 
more rapidly than this. On the other hand, the ILU preconditioned GMRES is largely insensitive to the 
scattering ratio c, as shown in Fig. 2. The computational time required for GMRES convergence is 
observed to be essentially independent of the scattering ratio c, unlike methods based on transport sweeps. 
This independence is a consequence of the ILU(7) preconditioner, which dynamically selects the important 
matrix elements for the various values of c. 

Note that for this particular problem with S8 quadrature, the combined preconditioner construction time 
and GMRES solver CPU times are competitive with traditional transport sweeps when the value of c 
becomes greater that about 0.25. ILU right preconditioned GMRES is roughly comparable in speed to 
DSA, but DSA is always somewhat faster. It is worth noting that if the CPU time required for the 
preconditioner construction phase is neglected (about 0.3 sec), then GMRES is competitive with DSA for 
any value of c > 0. This is significant, since the cost of the preconditioner can be amortized over several 
different values of the source vector, S, which contains only the external source data and the boundary 
values. 

The next problem is designed to test the ability of GMRES to handle severe anisotropic scattering. The 
scattering cross section moments used are those derived by Morel [ 141 to model charged particle scattering. 
These cross sections moments are given by 

n(n+ 1)) n = 0 , 1 , .  . . M .  1 
200 

Es,n = - (M(M + 1) - 

The medium is purely scattering and held five mean free paths thick (independent of M), with a mesh 
spacing of 0.1 mean free paths.* There is once again an isotropic incoming flux on both boundaries. A 

*Note that as the value of M changes, the total cross section changes as well, and so to keep the slab five mean free paths thick 

411 1 American Nuclear Society Topical Meeting in Mathematics & Computations, Gatlinburg, TN, 2003 



SOME REMARKS ON GMRES FOR TRANSPORT THEORY 

M ILU(7) GMRES sweeps 
Iters CPU Iters CPU 

2 0.02 1 0.02 82 1.06 
4 0.06 2 0.10 1 1 1  4.82 
8 0.26 3 0.26 213* 46.92 

16 0.76 4 0.80 43* 61.32 

t 

DSA 
Iters CPU 

39 0.62 
49 1.80 

41* 9.02 
21* 30.30 

- Preconditi ner + GMRES 88Aq t nd rdqrans rtSweeps 
8 ransport g e e p s  
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Figure 2. The effect of scattering ratio c on the run time of ILU preconditioned GMRES, compared to 
standard sweeps and DSA. GMRES is insensitive to the scattering ratio. This problem uses s8 quadrature. 

sweeps convergence criteria of 
DSA, except for the cases M = 8 and M = 16, where the criteria was relaxed to 
convergence within a reasonable number of iterations. Table I compares GMRES with transport sweeps for 
different values of scattering order M. 

was used on all the angular flux moments in standard sweeps and in 
in order to achieve 

GMRES with ILU preconditioning is seen to be very efficient at handling the severe anisotropy in this 
problem; it can be seen from Table I that GMRES is from one to two orders of magnitude faster than 
standard transport sweeps for this test problem. 

Finally, we consider a multi-group problem with upscatter and downscatter. A non-symmetric iterative 
technique such as GMRES can be applied to the full multigroup equations, thereby eliminating the need for 
energy group iterations. The homogeneous five mfp thick slab problem was considered with isotropic 

i t  is necessary to adjust the physical dimension of the slab. 
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Figure 3. The run times of various solvers applied to a problem with both upscatter and downscatter, as a 
function of the number of energy groups. The preconditioner construction time is shown separately from 
the GMRES iteration time. 

incoming fluxes all energy groups and with multigroup macroscopic cross sections defined as 

The traditional approach to this problem for sweep-based methods is to perform additional cycles through 
those energy groups which have upscattering sources; for comparison, we have performed such upscatter 
iterations with a convergence criteria of 
and the relative amount of upscattering between the energy groups, the computational effort for upscatter 
iterations can increase rapidly. In contrast, as applied here, GMRES solves for all of the unknown angular 
fluxes at each position, angular direction, and energy group simultaneously. It would be expected that an 
iterative method which can calculate the unknowns in such a global manner would be very efficient at 
solving upscatter problems. 

in the scalar flux. Depending on the number of energy groups 

Figure 3 shows a comparison of GMRES, unaccelerated transport sweeps, and DSA transport sweeps, for 
different numbers of energy groups for this multigroup problem with upscatter. Note the large increase in 
CPU time for standard transport sweeps when upscatter is present in the problem. The preconditioner CPU 
time increase as a function of the number of groups is again nonlinear, but the preconditioned GMRES 
algorithm is faster than DSA transport sweeps. 

While the ILU preconditioned GMRES has proven rather effective in solving the slab geometry transport 
problems considered, it is worrying that as the computational work scales nonlinearly with the number of 
discrete ordinates. The worst aspects of this are due to the preconditioner, and at some point the 
preconditioner construction time by itself could exceed the CPU time for standard transport sweeps. This 
may limit the utility of the direct application of an ILU preconditioned GMRES to specific classes of 
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Scattering Ratio 

Figure 4. Number of iterations required by GMRES accelerated simple transport sweeps (GSS) and by 
DSA, both normalized to the number of iterations required for unaccelerated simple sweeps (SS), as a 
function of scattering ratio, for a slab 15 mean-free-paths thick. Quadrature order is Sg. 

problems where the preconditioner cost is acceptable, or else can be amortized over many uses. 
Fortunately, GMRES can also be applied to accelerate traditional transport sweeps and perhaps even DSA 
transport sweeps, in which the physics of the problem provides much the same benefit as a preconditioner. 
We discuss this next. 

3. GMRES AS AN ACCELERATOR FOR TRANSPORT SWEEPS 

In this section we apply GMRES to accelerate both standard transport sweeps and DSA transport sweeps in 
one-group slab geometry problems with isotropic scattering, and with isotropic incoming fluxes applied to 
both boundaries of the system. The basic descritization is again diamond-difference discrete ordinates. But 
the fundamental unknowns on which we iterate are now the flux moments q5 = M$, and we build upon 
traditional transport method iterations, which have the form of the fixed-point iteration of Eq. 2. We 
compare these iterations with the application of GMRES to the fixed point problem itself, (I - L)# = 40, 
and note that this can be retrofitted into a code that already performs the fixed point iteration. Basically we 
simply have to apply L to a set of flux moments, as though we were performing a step of the fixed point 
iteration, and then compute q5 - Lq5. This is all GMRES needs in order to build the Krylov subspace basis 
and a representation of the operator in that basis. 

In the tables and plots we refer to standard sweeps as SS, to DSA sweeps as DSA, and when accelerating 
either of these with GMRES we prepend the letter G. In all cases the convergence criterion is 1 x 
the 22 norm of the solution vector (scalar flux). Also in all cases the initial flux guess is 1, independent of 
space. 

on 

Figure 4 shows the ratio of the number of sweeps required by GSS to that required by standard transport 
sweeps (SS), as a function of the scattering ratio; the plots are for Sg computations in a 15 mfp thick slab. 
Also shown is the same ratio for DSA. We see that, as predicted, GSS requires fewer transport sweeps than 
simple sweeps alone. Indeed, its behavior with scattering ratio is very similar to that of DSA, although 
DSA in all cases requires fewer sweeps than GSS. It is surprising that GSS does so well for highly 
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scattering systems; for a 5 mean-free-path thick slab with c = 1 (not shown, see [ 1 I]) GSS requires only 12 
physical transport sweeps, while simple unaccelerated sweeps requires 176 physical sweeps. Thus, while 
about one particle in a million has collided 176 times inside the slab, by minimizing the residual GSS is 
able to construct a solution accurate to as a linear combination of only the first 12 simple transport 
sweeps. While not shown here, a comparison of CPU time shows that GMRES reduces the error in the 
scalar flux at about the same rate as DSA [ 1 I]. While these results do not show that GMRES is faster than 
DSA, it should be noted that GMRES' good properties come from its minimization of the residual, 
independent of the details of spatial discretization. We can therefore expect that it will show excellent 
performance even for discretizations in which consistent DSA is not useful; Ashby et al. [3] have shown 
this to be so in one-dimension. 

GMRES can in principle be used to accelerate DSA, and Table I1 shows some results of this. These results 
are for a 15 mean-free-path thick slab using either S8, s16, or s 3 2  quadrature; the data format is x/y where 
x is the number of applications of T-' (sweeps) and y is CPU time in milliseconds. Generally, the 
GMRES accelerated DSA (GDSA) requires the same or fewer transport sweeps than pure DSA. 
Occasionally it requires one extra sweep; this comes about because our implementation of the GMRES 
accelerated algorithms all compute and store the uncollided flux as part of their initialization, while the 
DSA algorithm does not need this extra step. 

While GMRES generally reduces the number of sweeps required by DSA for larger values of the scattering 
ratio, it does not always reduce the CPU time required. GMRES has significant overhead 
(orthogonalization of a Krylov subspace basis, minimization of the residual, flux construction as a linear 
combination of basis vectors, etc.) Only if the sweeps are expensive, as in the S16 and S32 runs, does this 
extra overhead pay for itself by reducing the overall CPU time. In our computations the overhead from 
GMRES ranges from as much as 30% for s8 calculations down to about 15% for S32 calculations, while, 
for comparison, the overhead of DSA ranges from 10% down to about 1 % for those same cases. Careful 
optimization of GMRES and improved efficiency of the algorithm are therefore important matters for 
practical implementation. 

Table I1 also shows the scaling of GDSA with quadrature order. We see that it scales identically to DSA 
with the number of discrete ordinates. This is in contrast to the rapid growth of CPU time required for ILU 
preconditioned GMRES. The GMRES accelerated simple transport sweeps, GSS, CPU time also scales 
linearly with the number of discrete ordinate directions. 

An important characteristic of DSA is, of course, that the number of iterations required for convergence is 
relatively insensitive to the scattering ratio. GSS shares this feature; the number of iterations required for 
GMRES accelerated sweeps does grow slowly with c, and this growth is slightly faster than that exhibited 
by DSA, but it is nothing like the exponential growth that unaccelerated sweeps would show. However, 
unlike DSA, GSS also shows a slow growth in the number of sweeps required as the optical thickness of 
the system is increased. Physically this growth is not surprising: GMRES acceleration of simple transport 
sweeps cannot be expected to magically provide all of the missing physics of highly collided particles far 
from their point of injection into the slab, and so in a thick slab it requires more physical transport sweeps 
in order to accumulate enough information on these highly collided particles to provide a good solution. 
DSA on the other hand is nearly optimal in describing particles far from the boundaries in a highly 
scattering medium, so the GMRES accelerated DSA also cannot be expected to take many fewer iterations 
than DSA for thick systems; this was seen in the only marginal acceleration of DSA displayed in Table 11. 
Thus, while for thin slabs the GMRES accelerated simple transport sweeps are almost as fast as DSA, GSS 
slows down for thicker slabs. This may explain the results of other computations [5,6] which seem to 
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s 3 2  
DSA GDSA 
21171 2/27 1 
51473 51580 
51473 61685 

I I I 1 I I I 0.30 I 61172 I 61224 I 61304 I 61379 I 61579 1 61685 I 

I I I I I I 

1.00 I 101289 I 81298 I 101515 I 81500 I 101979 I 81899 

suggest that GMRES is not comparable with DSA; these other works focused on very thick systems. 

While GMRES appears to offer a very effective accelerator for transport sweeps, it must be remembered 
that this comes at the cost of significant storage requirements. However, GMRES accelerated iterations 
provide a systematic way to trade storage for speed. If q5(i)  = Lq5(i-1) + 40 is a fixed point iteration for the 
flux moments and 1 is any integer, then q5(i) = Llq5(2-l) + '$; Uq50 is another fixed point iteration with 
the same solution. While this corresponds trivially to 1 iterations of the original algorithm, the acceleration 
of this algorithm using GMRES will depend on 1. Applied to the simple transport sweeps algorithm, 
L = M T I C  with 40 = MT-IS,  such an algorithm corresponds to taking 1 simple transport sweeps 
within each iterate of GMRES, so that each basis vector of the Krylov subspace being built contains 
information about more highly collided fluxes. Since we are now giving GMRES better information about 
multiply scattered particles we can expect that for a highly scattering problem a smaller Krylov subspace 
will be required in order to achieve a good result. Thus, while the total number of transport sweeps might 
not be reduced (in fact, we shall see in the examples below that it is usually increased), we can expect a 
smaller storage requirement to hold the basis of the Krylov subspace (smaller n). Thus, we may be able to 
trade storage f o r  speed. We shall  cal l  this  a GMRES accelerated Z-step transport sweep, and denote  it G2SS 
and G3SS for the case of 2 and 3 sweeps per Krylov subspace dimension, respectively. 

Table I11 shows the CPU time and storage requirement for GMRES accelerated 2-step and 3-step transport 
sweeps (G2SS and G3SS). While we can reduce the storage requirements by performing these multiple 
sweeps, the total number of sweeps (applications of T I ) ,  and hence the CPU time required, actually 
increases. Thus, we have an explicit ability to trade space for speed. 

4. CONCLUSIONS 

In this brief paper we have reviewed some results on the application of GMRES to transport problems. 
GMRES can be applied to the direct solution of the transport equation for the angular flux, provided that a 
good preconditioner is used. A general purpose ILU preconditioner has proven effective for relatively 
small problems, including problems with upscatter and with highly anisotropic scatter. Especially in this 
latter problem the method performed extremely well. While some optimization may be possible, the 
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Table 111. Storage required for GMRES accelera 
GMRES G2SS 

nonlinear scaling of ILU construction costs with the number of discrete ordinates makes its application as a 
general purpose transport solver questionable. 

We have observed that classical iterations for transport solutions are in the form of fixed point iterations for 
flux moments [IO]. The application of GMRES to such a fixed point problem can be interpreted as an 
accelerator or extrapolation method which constructs a new iterate as a linear combination of previous 
iterates [I I]. It does so by minimizing the residual, which is an upper bound for the flux error itself, so 
GMRES applied to the fixed point problem can be expected to accelerate the fixed point iteration. This idea 
can be retrofitted into any existing transport code that is based on a stationary iteration. We have shown that 
this GMRES acceleration greatly accelerates standard transport sweeps, providing performance that is 
often comparable to DSA. DSA itself can be accelerated, but only if the cost of transport sweeps is high. 
The real utility of this GMRES acceleration of transport sweeps may be in problems for which DSA is 
unavailable, but that is a matter for others to explore. 

The chief objection to GMRES as a transport solver is that it requires storage of multiple flux (or flux 
moment) vectors. We have shown that this space can be systematically traded for speed by taking multiple 
transport sweeps within each GMRES iteration. This allows additional flexibility in the application of 
GMRES to accelerate transport iterations. 
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